Time-Domain Concentration and Approximation of Computable Bandlimited Signals

Holger Boche^{1,2} and <u>Ullrich J. Mönich¹</u>

¹Technical University of Munich, Chair of Theoretical Information Technology ²Munich Center for Quantum Science and Technology (MCQST)

IEEE ICASSP 2021

IEEE International Conference on Acoustics, Speech, and Signal Processing

ПΠ

- Bandlimited signals play a crucial role in signal processing.
- Bandlimited signals have a perfect concentration in the frequency domain.
- However, they cannot simultaneously be perfectly concentrated in the time domain.

We study the time concentration behavior of bandlimited signals from a computational point of view.

- In many applications digital hardware is used (CPUs, FPGAs, DSPs, etc.).
- Computability of a signal is directly linked to the approximation with "simple" signals, where we
 have an "effective"/algorithmic control of the approximation error.
- If a signal is not computable, we cannot control the approximation error.

Turing Machine

Turing Machine:

Abstract device that manipulates symbols on a strip of tape according to certain rules.

- Turing machines are an idealized computing model.
- No limitations on computing time or memory, no computation errors.
- Although the concept is very simple, Turing machines are capable of simulating any given algorithm.

Turing machines are suited to study the limitations of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer, regardless how powerful it may be.

A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem," *Proceedings of the London Mathematical Society*, vol. s2-42, no. 1, pp. 230–265, Nov. 1936

A. M. Turing, "On computable numbers, with an application to the Entscheidungsproblem. A correction," *Proceedings of the London Mathematical Society*, vol. s2-43, no. 1, pp. 544–546, Jan. 1937

- $L^{p}(\Omega)$, $1 \leq p < \infty$: space of all measurable, pth-power Lebesgue integrable functions on Ω Norm: $\|f\|_{p} = (\int_{\Omega} |f(t)|^{p} dt)^{1/p}$.
- $L^{\infty}(\Omega)$: space of all functions for which the essential supremum norm $\|\cdot\|_{\infty}$ is finite.

Bandlimited Functions

 We consider the Bernstein spaces B^p_π: bandlimited signals with finite L^p-norm as characteristic time domain behavior.

Definition (Bernstein Space)

Let \mathcal{B}_{σ} be the set of all entire functions f with the property that for all $\varepsilon > 0$ there exists a constant $C(\varepsilon)$ with $|f(z)| \leq C(\varepsilon) \exp((\sigma + \varepsilon)|z|)$ for all $z \in \mathbb{C}$.

The Bernstein space \mathcal{B}^{p}_{σ} consists of all functions in \mathcal{B}_{σ} , whose restriction to the real line is in $L^{p}(\mathbb{R})$, $1 \leq p \leq \infty$. The norm for \mathcal{B}^{p}_{σ} is given by the L^{p} -norm on the real line.

- A function in \mathcal{B}^{p}_{σ} is called bandlimited to σ .
- \mathcal{B}^2_{σ} : space of bandlimited functions with finite energy.
- $\mathcal{B}^{\infty}_{\sigma,0}$: space of all functions in $\mathcal{B}^{\infty}_{\sigma}$ that vanish at infinity.
- We have $\mathcal{B}_{\sigma}^r \subsetneq \mathcal{B}_{\sigma}^s \subsetneq \mathcal{B}_{\sigma,0}^\infty$ for all $1 \leqslant r < s < \infty$.

A sequence of rational numbers $\{r_n\}_{n\in\mathbb{N}}$ is called computable sequence if there exist recursive functions a, b, s from \mathbb{N} to \mathbb{N} such that $b(n) \neq 0$ for all $n \in \mathbb{N}$ and

$$\mathbf{r}_{\mathbf{n}} = (-1)^{s(\mathbf{n})} \frac{a(\mathbf{n})}{b(\mathbf{n})}, \qquad \mathbf{n} \in \mathbb{N}.$$

 A recursive function is a function, mapping natural numbers into natural numbers, that is built of simple computable functions and recursions. Recursive functions are computable by a Turing machine.

First example of an effective approximation

A real number x is said to be computable if there exists a computable sequence of rational numbers $\{r_n\}_{n \in \mathbb{N}}$ and a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$|x - r_n| < 2^{-M}$$

for all $n \ge \xi(M)$.

- \mathbb{R}_c : set of computable real numbers
- \mathbb{R}_c is a field, i.e., finite sums, differences, products, and quotients of computable numbers are computable.
- Commonly used constants like e and π are computable.

We call a function f elementary computable if there exists a natural number L and a sequence of computable numbers $\{\alpha_k\}_{k=-L}^L$ such that

$$f(t) = \sum_{k=-L}^{L} \alpha_k \frac{\sin(\pi(t-k))}{\pi(t-k)}$$

- Every elementary computable function is Turing computable.
- For every elementary computable function f, the norm $\|f\|_{\mathcal{B}_{\pi}^{p}}$ is computable.

Definition A

A function in $f\in {\mathcal B}^p_\pi, 1\leqslant p<\infty$, is called computable in ${\mathcal B}^p_\pi$ if there exists a computable sequence of elementary computable functions $\{f_n\}_{n\in\mathbb{N}}$ and a recursive function $\xi\colon\mathbb{N}\to\mathbb{N}$ such that for all $M\in\mathbb{N}$ we have

$$\|\mathbf{f} - \mathbf{f}_n\|_p \leqslant 2^{-N}$$

for all $n \ge \xi(M)$.

- CB^p_π: set of all signals that are computable in B^p_π.
- $C\mathcal{B}^{\infty}_{\pi,0}$: set of all signals that are computable in $\mathcal{B}^{\infty}_{\pi,0}$ (analogous definition).

Definition A

A function in $f\in {\mathcal B}^p_\pi, 1\leqslant p<\infty$, is called computable in ${\mathcal B}^p_\pi$ if there exists a computable sequence of elementary computable functions $\{f_n\}_{n\in\mathbb{N}}$ and a recursive function $\xi\colon\mathbb{N}\to\mathbb{N}$ such that for all $M\in\mathbb{N}$ we have

$$\|\mathbf{f} - \mathbf{f}_n\|_p \leqslant 2^{-N}$$

for all $n \ge \xi(M)$.

- \mathcal{CB}^p_{π} : set of all signals that are computable in \mathcal{B}^p_{π} .
- $CB_{\pi,0}^{\infty}$: set of all signals that are computable in $B_{\pi,0}^{\infty}$ (analogous definition).

We can approximate every signal $f \in CB^p_{\pi}$ by an elementary computable function, where we have an effective control of the approximation error.

Effective Approximation

For $f\in {\mathcal {CB}}^p_\pi, p\in [1,\infty)\cap {\mathbb R}_c$ and all $M\in {\mathbb N}$ we have

$$\|\mathbf{f} - \mathbf{f}_{\mathfrak{n}}\|_{\infty} \leqslant (1+\pi) \|\mathbf{f} - \mathbf{f}_{\mathfrak{n}}\|_{\mathfrak{p}} \leqslant \frac{1+\pi}{2^{\mathsf{M}}}$$

for all $n \ge \xi(M)$.

We can approximate any signal $f \in \mathcal{CB}^p_{\pi}$ by an elementary computable function, where we have an effective and uniform control of the approximation error.

Advantages:

- Intuitively clear
- Very general
- Easy to perform analytical calculations

Advantages:

- Intuitively clear
- Very general
- Easy to perform analytical calculations

Drawbacks:

- Difficult to answer questions about the time concentration behavior
- Connection to the usual definition of a computable continuous function unclear

Definition (Computable Continuous Function)

A function $f \colon \mathbb{R} \to \mathbb{R}$ is a called computable continuous function if

- f maps every computable sequence $\{t_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ into a computable sequence $\{f(t_n)\}_{n\in\mathbb{N}}$ of real numbers.
- 2 there exists a recursive function $d \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ such that for all $L, M \in \mathbb{N}$ we have: $|t_1 - t_2| \leqslant 1/d(L, M)$ implies $|f(t_1) - f(t_2)| \leqslant 2^{-M}$ for all $t_1, t_2 \in [-L, L]$.

Time Concentration

"Amount" of the signal f in [-L, L]:

$$\int_{-1}^{L} |f(t)|^{p} dt$$

т

Time concentration on [-L, L]:

$$\int_{-\infty}^{\infty} |f(t)|^{p} dt - \int_{-L}^{L} |f(t)|^{p} dt = \int_{|t|>L} |f(t)|^{p} dt$$

- The smaller this value, the more concentrated is the signal.
- When is the convergence effective?

Time Concentration

"Amount" of the signal f in [-L, L]:

$$\int_{-1}^{L} |f(t)|^p dt$$

Time concentration on [-L, L]:

$$\int_{-\infty}^{\infty} |f(t)|^p \ dt - \int_{-L}^{L} |f(t)|^p \ dt = \int_{|t|>L} |f(t)|^p \ dt$$

- The smaller this value, the more concentrated is the signal.
- When is the convergence effective?

Observation: If $f \in \mathcal{CB}^p_{\pi}$, $p \in [1, \infty) \cap \mathbb{R}_c$, then

- $\|f\|_{\mathcal{B}^p_\pi} \in \mathbb{R}_c.$
- Since $\{\int_{|t| \leq L} |f(t)|^p dt\}_{L \in \mathbb{N}}$ is monotonically increasing, the convergence is effective.
- For $f\in {\mathfrak CB}^p_\pi$ we have an algorithmic description of the time concentration behavior.

Computable Bandlimited Signals: Definition B

Definition of a computable bandlimited signal using the idea of effective time concentration:

Definition B

We say that a signal $f \in \mathcal{B}^p_{\pi}$, $p \in [1, \infty) \cap \mathbb{R}_c$ has an effectively computable time concentration if

- 1 f is a computable continuous function, and
- 2 there exists a recursive function $\xi \colon \mathbb{N} \to \mathbb{N}$ such that for all $M \in \mathbb{N}$ we have

$$\|f\|_{\mathfrak{B}^p_\pi}^p-\int_{-L}^{L}|f(t)|^p\;dt\bigg|\leqslant \frac{1}{2^M}$$

for all $L \ge \xi(M)$.

 \mathcal{CT}^p_{π} , $p \in [1, \infty) \cap \mathbb{R}_c$: set of such signals.

For $p=\infty,$ i.e., signals $f\in \mathcal{B}^\infty_{\pi,0}$, we use an analogous definition, with $|\|f\|_{\mathcal{B}^\infty_{\pi,0}}-\text{max}_{|t|\leqslant L}|f(t)|\,\text{d}t|\leqslant 1/2^M.$

Theorem 1

Let $p \in (1, \infty) \cap \mathbb{R}_c$. Then we have $\mathbb{CB}_{\pi}^p = \mathbb{CT}_{\pi}^p$.

- For $p \in (1, \infty) \cap \mathbb{R}_c$, the sets \mathbb{CB}^p_{π} and \mathbb{CT}^p_{π} (Definitions A and B) coincide.
- No longer true for p = 1 and $p = \infty$.

Theorem 1

Let $p \in (1,\infty) \cap \mathbb{R}_c$. Then we have $\mathbb{CB}^p_{\pi} = \mathbb{CT}^p_{\pi}$.

- For $p \in (1, \infty) \cap \mathbb{R}_c$, the sets \mathbb{CB}^p_{π} and \mathbb{CT}^p_{π} (Definitions A and B) coincide.
- No longer true for p = 1 and $p = \infty$.

Theorem 2

Let $p \in (1, \infty) \cap \mathbb{R}_c$. Then we have $f \in \mathcal{CB}^p_{\pi}$ if and only if $f \in \mathcal{B}^p_{\pi}$, f is a computable continuous function, and $\|f\|_{\mathcal{B}^p_{\pi}} \in \mathbb{R}_c$.

- Simple characterization of CB^p_{π} signals.
- No longer true for p = 1 and $p = \infty$.

- We studied the time concentration behavior of bandlimited signals from a computational point of view.
- We introduced a definition of a computable bandlimited signal based on the notion of effective time concentration (Definition B).
- We showed that Definition B is equivalent to Definition A (for $p \in (1, \infty) \cap \mathbb{R}_c$).
- Connections to computable continuous functions are revealed.
- Our findings lead to a simple characterization of computable bandlimited signals.

Thank you!