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Motivation

• Bandlimited signals play a crucial role in signal processing.
• Bandlimited signals have a perfect concentration in the frequency domain.
• However, they cannot simultaneously be perfectly concentrated in the time domain.

We study the time concentration behavior of bandlimited signals
from a computational point of view.
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Why Study Questions of Computability?

• In many applications digital hardware is used (CPUs, FPGAs, DSPs, etc.).
• Computability of a signal is directly linked to the approximation with “simple” signals, where we

have an “effective”/algorithmic control of the approximation error.
• If a signal is not computable, we cannot control the approximation error.
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Turing Machine
Turing Machine:
Abstract device that manipulates symbols on a strip of tape according to certain rules.

• Turing machines are an idealized computing model.
• No limitations on computing time or memory, no computation errors.
• Although the concept is very simple, Turing machines are capable of simulating any given

algorithm.

Turing machines are suited to study the limitations of a digital computer:

Anything that is not Turing computable cannot be computed on a real digital computer, regard-
less how powerful it may be.

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem,” Proceedings of the London Mathematical Society,
vol. s2-42, no. 1, pp. 230–265, Nov. 1936

A. M. Turing, “On computable numbers, with an application to the Entscheidungsproblem. A correction,” Proceedings of the London Mathe-
matical Society, vol. s2-43, no. 1, pp. 544–546, Jan. 1937
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Notation

• Lp(Ω), 1 6 p <∞: space of all measurable, pth-power Lebesgue integrable functions on Ω
Norm: ‖f‖p =

(∫
Ω|f(t)|p dt

)1/p.
• L∞(Ω): space of all functions for which the essential supremum norm ‖ · ‖∞ is finite.
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Bandlimited Functions

• We consider the Bernstein spaces B
p
π: bandlimited signals with finite Lp-norm as characteristic

time domain behavior.

Definition (Bernstein Space)
Let Bσ be the set of all entire functions f with the property that for all ε > 0 there exists a constant
C(ε) with |f(z)| 6 C(ε) exp

(
(σ+ ε)|z|

)
for all z ∈ C.

The Bernstein space B
p
σ consists of all functions in Bσ, whose restriction to the real line is in Lp(R),

1 6 p 6 ∞. The norm for Bpσ is given by the Lp-norm on the real line.

• A function in B
p
σ is called bandlimited to σ.

• B2
σ: space of bandlimited functions with finite energy.

• B∞
σ,0: space of all functions in B∞

σ that vanish at infinity.
• We have Brσ ( Bsσ ( B∞

σ,0 for all 1 6 r < s <∞.
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Computable Sequences of Rationals

A sequence of rational numbers {rn}n∈N is called computable sequence if there exist recursive
functions a,b, s from N to N such that b(n) 6= 0 for all n ∈ N and

rn = (−1)s(n)
a(n)

b(n)
, n ∈ N.

• A recursive function is a function, mapping natural numbers into natural numbers, that is built of
simple computable functions and recursions. Recursive functions are computable by a Turing
machine.
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Computable Real Numbers

First example of an effective approximation

A real number x is said to be computable if there exists a computable sequence of rational numbers
{rn}n∈N and a recursive function ξ : N→ N such that for all M ∈ N we have

|x− rn| < 2−M

for all n > ξ(M).

• Rc: set of computable real numbers
• Rc is a field, i.e., finite sums, differences, products, and quotients of computable numbers are

computable.
• Commonly used constants like e and π are computable.
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Elementary Computable Functions

We call a function f elementary computable if there exists a natural number L and a sequence of
computable numbers {αk}

L
k=−L such that

f(t) =

L∑
k=−L

αk
sin(π(t− k))
π(t− k)

.

• Every elementary computable function is Turing computable.
• For every elementary computable function f, the norm ‖f‖Bpπ is computable.

Time-Domain Concentration and Approximation of Computable Bandlimited Signals 9



Computable Bandlimited Signals: Definition A

Definition A
A function in f ∈ B

p
π, 1 6 p <∞, is called computable in B

p
π if there exists a computable sequence

of elementary computable functions {fn}n∈N and a recursive function ξ : N→ N such that for all
M ∈ N we have

‖f− fn‖p 6 2−M

for all n > ξ(M).

• CB
p
π: set of all signals that are computable in B

p
π.

• CB∞
π,0: set of all signals that are computable in B∞

π,0 (analogous definition).

We can approximate every signal f ∈ CB
p
π by an elementary computable function, where we

have an effective control of the approximation error.
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Effective Approximation

For f ∈ CB
p
π, p ∈ [1,∞) ∩ Rc and all M ∈ N we have

‖f− fn‖∞ 6 (1 + π)‖f− fn‖p 6
1 + π

2M

for all n > ξ(M).

We can approximate any signal f ∈ CB
p
π

by an elementary computable function,
where we have an effective and uniform
control of the approximation error.
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Advantages / Drawbacks of Definition A

Advantages:
• Intuitively clear
• Very general
• Easy to perform analytical calculations

Drawbacks:
• Difficult to answer questions about the time concentration behavior
• Connection to the usual definition of a computable continuous function unclear
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Computable Continuous Functions

Definition (Computable Continuous Function)
A function f : R→ R is a called computable continuous function if

1 f maps every computable sequence {tn}n∈N ⊂ R into a computable sequence {f(tn)}n∈N of real
numbers.

2 there exists a recursive function d : N× N→ N such that for all L,M ∈ N we have:
|t1 − t2| 6 1/d(L,M) implies |f(t1) − f(t2)| 6 2−M for all t1, t2 ∈ [−L,L].
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Time Concentration

“Amount” of the signal f in [−L,L]:
∫L
−L

|f(t)|p dt

Time concentration on [−L,L]:
∫∞
−∞|f(t)|p dt−

∫L
−L

|f(t)|p dt =
∫
|t|>L

|f(t)|p dt

• The smaller this value, the more concentrated is the signal.
• When is the convergence effective?

Observation: If f ∈ CB
p
π, p ∈ [1,∞) ∩ Rc, then

• ‖f‖Bpπ ∈ Rc.
• Since {

∫
|t|6L|f(t)|

p dt}L∈N is monotonically increasing, the convergence is effective.

• For f ∈ CB
p
π we have an algorithmic description of the time concentration behavior.
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Computable Bandlimited Signals: Definition B

Definition of a computable bandlimited signal using the idea of effective time concentration:

Definition B
We say that a signal f ∈ B

p
π, p ∈ [1,∞) ∩ Rc has an effectively computable time concentration if

1 f is a computable continuous function, and

2 there exists a recursive function ξ : N→ N such that for all M ∈ N we have∣∣∣∣‖f‖pBpπ −

∫L
−L

|f(t)|p dt
∣∣∣∣ 6 1

2M

for all L > ξ(M).

CTpπ, p ∈ [1,∞) ∩ Rc: set of such signals.

For p = ∞, i.e., signals f ∈ B∞
π,0, we use an analogous definition, with

|‖f‖B∞
π,0

− max|t|6L|f(t)| dt| 6 1/2M.

Time-Domain Concentration and Approximation of Computable Bandlimited Signals 15



Main Results

Theorem 1
Let p ∈ (1,∞) ∩ Rc. Then we have CB

p
π = CTpπ.

• For p ∈ (1,∞) ∩ Rc, the sets CB
p
π and CTpπ (Definitions A and B) coincide.

• No longer true for p = 1 and p = ∞.

Theorem 2
Let p ∈ (1,∞) ∩ Rc. Then we have f ∈ CB

p
π if and only if f ∈ B

p
π, f is a computable continuous

function, and ‖f‖Bpπ ∈ Rc.

• Simple characterization of CBpπ signals.
• No longer true for p = 1 and p = ∞.
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Conclusions

• We studied the time concentration behavior of bandlimited signals from a computational point of
view.

• We introduced a definition of a computable bandlimited signal based on the notion of effective
time concentration (Definition B).

• We showed that Definition B is equivalent to Definition A (for p ∈ (1,∞) ∩ Rc).
• Connections to computable continuous functions are revealed.
• Our findings lead to a simple characterization of computable bandlimited signals.
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Thank you!
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