

ANALYTIC PROPERTIES OF DOWNSAMPLING FOR BANDLIMITED SIGNALS

Introduction

- We study downsampling and bandlimited interpolation for bandlimited signals.
- In signal processing books: the theoretical treatment of downsampling and bandlimited interpolation is not given special attention, despite their high importance in applications.
- Conception: the bandlimited interpolation exists always.
- We construct a bandlimited signal, which after downsampling does not have a bounded bandlimited interpolation. \Rightarrow downsampling needs to be treated carefully

Motivation

"Equivalence" between analog and digital world

Sampling: $f(t) \rightarrow$ sampled signal is $\{x_k\}_{k \in \mathbb{Z}} = \{f(k)\}_{k \in \mathbb{Z}}$

Downsampling: Process of reducing the sampling rate of a discretetime signal by removing samples.

 $\{x_k\}_{k\in\mathbb{Z}} \to \text{downsampled signal is } \{x_k^{\text{down}}\}_{k\in\mathbb{Z}} = \{x_{2k}\}_{k\in\mathbb{Z}}$

Bandlimited interpolation:

Find a signal f_{π} with bandwidth π that interpolates the downsampled signal $\{x_k^{\text{down}}\}_{k\in\mathbb{Z}}$, i.e., satisfies:

> $f_{\pi}(k) = x_k^{\mathrm{down}}$, $\pmb{k}\in\mathbb{Z}$

We study the existence of the bandlimited interpolation for sequences that are created by downsampling a discrete-time signal that has been generated by sampling a bandlimited signals.

Notation

 $L^{p}(\mathbb{R})$, $1 \leq p \leq \infty$: the usual L^{p} -spaces. $\ell^{2}(\mathbb{Z})$: set of all square summable sequences. c_0 : set of all sequences that vanish at infinity. $C_0^{\infty}[0, 1]$: space of all functions that have continuous derivatives of all orders and are zero outside [0, 1]. Bernstein space $\mathcal{B}^{\rho}_{\sigma}$ ($\sigma > 0, 1 \leq \rho \leq \infty$): space of all functions of exponential type at most σ , whose restriction to the real line is in $L^{p}(\mathbb{R})$. Norm: L^{p} -norm on the real line. A signal in \mathcal{B}^{p}_{σ} is bandlimited to σ . \mathcal{B}^{2}_{σ} is the frequently used space of bandlimited functions with bandwidth σ and finite energy. We call a signal in $\mathcal{B}^{\infty}_{\pi}$ bounded bandlimited signal. $\mathcal{B}^{\infty}_{\sigma,0}$: space of all functions in $\mathcal{B}^{\infty}_{\sigma}$ that vanish at infinity.

SPTM-P1.5: Signal Processing Theory and Methods

 $f_{\pi}(t/2)$ (bandl. interp.)

Downsampling and Bandlimited Interpolation

Signals in $\mathcal{B}_{2\pi}^2$ (bandlimited, finite energy) • $f \in \mathcal{B}^2_{2\pi}$ is completely determined by its samples $\{f(\frac{k}{2})\}_{k \in \mathbb{Z}}$. We have

$$\lim_{k \to \infty} \max_{t \in \mathbb{R}} \left| f(t) - \sum_{k=-N}^{N} f\left(\frac{k}{2}\right) \frac{\sin(2\pi(t-\frac{k}{2}))}{2\pi(t-\frac{k}{2})} \right| = 0$$

- Downsampling: We have $\{f(\frac{k}{2})\}_{k\in\mathbb{Z}} \in \ell^2(\mathbb{Z})$ and $\{x_k^{\mathsf{down}}\}_{k\in\mathbb{Z}} = \{f(k)\}_{k\in\mathbb{Z}} \in \ell^2(\mathbb{Z}).$
- Bandlimited interpolation: $f_{\pi} \in \mathcal{B}^2_{\pi}$ exists and is given by

$$f_{\pi}(t) = \sum_{k=-\infty}^{\infty} f(k) rac{\sin(\pi(t-k))}{\pi(t-k)}, \quad t \in \mathbb{R}$$

For $\mathcal{B}^2_{2\pi}$ downsampling and bandlimited interpolation are well-behaved. Equivalence between continuous-time and discrete-time is preserved.

Signals in $\mathcal{B}_{2\pi,0}^{\infty}$ (bandlimited, bounded, vanish at infinity)

• $f \in \mathcal{B}_{2\pi 0}^{\infty}$ is uniquely determined by its samples $\{f(\frac{k}{2})\}_{k \in \mathbb{Z}}$. For all T > 0 we have

$$\lim_{N\to\infty}\max_{t\in[-T,T]}\left|f(t)-\sum_{k=-N}^{N}f\left(\frac{k}{2}\right)\frac{\sin(2\pi(t-\frac{k}{2}))}{2\pi(t-\frac{k}{2})}\right|=0.$$

• Downsampling: We have $\{f(\frac{k}{2})\}_{k\in\mathbb{Z}} \in c_0$ and $\{x_k^{\text{down}}\}_{k\in\mathbb{Z}} = \{f(k)\}_{k\in\mathbb{Z}} \in C_0.$

Question: Is there a continuous-time signal $f_{\pi} \in \mathcal{B}_{\pi}^{\infty}$ that interpolates $\{f(k)\}_{k\in\mathbb{Z}}$?

Distributional Behavior

In many books the bandlimited interpolation is formally obtained by using a convolution theorem and distribution theory. 1. The discrete-time signal is created by multiplying f with a Dirac comb

$$f_{\mathrm{III}}(t) = f(t) \cdot \mathrm{III}(t) = f(t) \cdot \sum_{k=-\infty}^{\infty} \delta(t-k) = \sum_{k=-\infty}^{\infty} f(k) \delta(t-k).$$

2. The bandlimited interpolation is obtained by convolving $f_{\rm III}$ with the impulse response of the ideal low-pass filter

$$f_{\pi}(t) = (f_{\mathrm{III}} * \mathrm{sinc})(t) = \sum_{k=-\infty}^{\infty} f(k)$$

It is not clear whether the above manipulations and expressions are always well-defined.

Another example where even the theory of distributions fails are convolution sum system representations.

H. Boche, U. Mönich, and B. Meinerzhagen, "Non-existence of convolution sum system representations," *IEEE Trans. Signal Process.*, vol. 67, no. 10, pp. 2649–2664, May 2019

Holger Boche and Ullrich J. Mönich Technische Universität München Lehrstuhl für Theoretische Informationstechnik

 $\mathbb R.$

 $(k) \frac{\sin(\pi(t-k))}{\pi(t-k)}.$

We use the signal

$$\gamma_{\delta}(t) = \mathrm{e}^{i\pi t} \boldsymbol{g}_{\delta}(t)$$

where

$$g_{\delta}(t) = rac{1}{\pi} \int_{0}^{\delta \pi} rac{\sin(\omega t)}{\omega \log(rac{\pi}{\omega})} \, \mathrm{d}\omega$$

- signal g_{δ} .

Theorem: Let $\delta \in (0, 1)$. There exists no $f_{\pi} \in \mathcal{B}_{\pi}^{\infty}$ with $f_{\pi}(k) = \gamma_{\delta}(k)$ for all $k \in \mathbb{Z}$. That is, there exists no bounded bandlimited interpolation for the downsampled sequence $\{\gamma_{\delta}(k)\}_{k\in\mathbb{Z}}$.

diverges (even in a distributional setting).

Theorem: Let
$$\delta \in (0, 1)$$
. Then, for all $t \in \mathbb{R} \setminus \mathbb{Z}$, we have

$$\lim_{N \to \infty} \left| \sum_{k=-N}^{N} \gamma_{\delta}(k) \frac{\sin(\pi(t-k))}{\pi(t-k)} \right| = \infty.$$
Further, there exists $a \ \phi_1 \in C_0^{\infty}[0, 1]$ such that

$$\lim_{N \to \infty} \left| \int_{-\infty}^{\infty} \sum_{k=-N}^{N} \gamma_{\delta}(k) \frac{\sin(\pi(t-k))}{\pi(t-k)} \phi_1(t) \ \mathrm{d}t \right| = \infty,$$

i.e., the series diverges in \mathcal{D}' .

Visualization of the divergence of the Shannon sampling series.

$$(\mathbf{S}_{N}\gamma_{\delta})(t) = \sum_{k=-N}^{N}\gamma_{\delta}(k)\frac{\sin(\pi(t-t))}{\pi(t-t)}$$

It is well-known that there exist sequences that do not possess a bounded bandlimited interpolation. Example:

$$X_k =$$

Note: The situation here is more complicated. The sequence is not freely chosen but obtained by downsampling of a bounded bandlimited signal.

Main Result

• γ_{δ} is a bandpass signal that is created by modulating the lowpass

• The spectrum of the lowpass signal g_{δ} is concentrated on $[-\delta\pi, \delta\pi]$. • We have $\gamma_{\delta} \in \mathcal{B}^{\infty}_{(1+\delta)\pi,0} \subset \mathcal{B}^{\infty}_{2\pi,0}$ (the effective bandwidth of γ_{δ} is $2\delta\pi$).

For the downsampled sequence $\{\gamma_{\delta}(k)\}_{k\in\mathbb{Z}}$, the Shannon sampling series

 $=\begin{cases} 0, & k \leq 0, \\ \frac{(-1)^k}{\log(1+k)}, & k \geq 1. \end{cases}$

ICASSP 2019